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Correlation Functions: Full and Reduced
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The six-differential per-event yield for two types of particles, A and B, is the
container of all information on (A,B) pair production in an event sample.
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The Full Correlation Function measures the
degree to which A and B production are
correlated (ie not independent) at any point in
six-dimensional (PA,PB) phase space.
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A Reduced Correlation Function
measures the correlation between A and
B production in some 6-D phase space
volume G, which is often parameterized;
here the parameter(s) is(are) generically
named a.



Residual Multiplicity Correlations
When the event sample can be divided into sub-samples such that A and B
production are uncorrelated within a sub-sample, then A and B are said to show only
a residual correlation.  The simplest example in heavy-ion collisions would be
residual multiplicity correlations.  Suppose A and B production are, at all points in
phase space, proportional to Npart, the number of participants in a Glauber model:
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In the example of Npart scaling
the correlation function is always
greater than one, by an amount
which increases with the width of
the Npart distribution.



(Relative-Azimuthal-)Angular
Correlations
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A widely-used reduced correlation function is the relative-azimuthal-angle CF, often
called the Angular Correlation Function for short.  The phase space volume G is
parameterized by Df and counts the number of pairs at fixed Df=fA-fB ;“binA” and
“binB” denote some arbitrary ranges in (PA,qA) and (PB,qB):
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The integral of the angular CF
satisfies a simple sum rule with
the pair rate and singles rates.



Worked Example: Elliptic Flow
Angular CF’s are often used to investigate elliptic flow, defined here as a residual
correlation in which the singles distributions follow a quadrupole pattern relative to a
reaction plane direction FRP but are otherwise uncorrelated.  We can then write the single
and joint distributions, and the angular correlation function follows immediately:
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The angular correlation function then becomes simply   C(Df ) = 1+ 2v2
Av2

B cos(2Df )

Measurement of the angular correlation function between two types of particles can reveal
the product of the quadrupole strengths v2

Av2
B without a measurement of FRP.

(In heavy-ion collisions the angular CF will also show the effects of residual multiplicity
correlations, but if only elliptic flow is present then the effect is just an overall multiplicative factor.)



The Two-Source Model
Each particle is assumed to come from one of two sources, “Flow” or “Jet”.  The Flow
source is multi-collisional, possibly thermalized, and its particles exhibit elliptic flow
relative to the reaction plane FRP.  The Jet source is fragmentation from prompt jets (and
dijets).  We allow for the possibility that jets “feel” the collision geometry by giving the
jet rate (before fragmentation) a quadrupole modulation.  The singles distributions are
controlled by the parameters FRP, and for the jet source the jet axis FJet :
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The quadrupole strength v2
FlowA is

specific to particles of type A from the
Flow source; nA

Flow is the rate of A-type
singles per event from the Flow source.

The function JA() is
peaked at 0,
normalized to 1, and
describes fragmentation. The constant <v2

JetA> is an average ellipticity for all jets
which produce A-type particles into binA.

(The corresponding definitions hold for B-type particles, of course.)



Sum Over Pair Types
Since the rate of all pairs can be partitioned into distinct types of pairs, the angular
correlation function can be written as a sum over pair types:
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Within the two-source model we can identify five distinct and disjoint pair types, and
we will write the angular correlation function as a sum over these types:

Flow-Flow: Each particle A and B area from the Flow source.

Flow-Jet: A is from the Flow source and B from Jet source, plus the reverse.

Jet-Other Jet: A and B are both from jets, but not the same hard scattering process

Jet-Same Jet: A and B are both fragments from the same jet.

Di-Jet: A and B are fragments from a back-to-back pair of jets.



Pair Types I: Flow-Flow, Flow-Jet,
and Jet-Other Jet
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These are the terms in the angular CF for the first three types of pairs.  The term
for the Flow-Flow type is exactly the same as in the elliptic flow example:

The JetA-FlowB term is similar (we need to remember to add its reverse also):
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The Jet-Other Jet term also has a quadrupole shape in the end:



Pair Types II: Same Jet, Same Dijet
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For (A,B) pairs which fragment from the same jet the joint distribution includes
two angular fragmentation functions JA() and JB(); and the result for the
corresponding term in the correlation function involves their convolution:

For pairs from opposite sides of a dijet the two jet
axes FJetA and FJetB are not independent, but their
acoplanarity yAB has a distribution DAB():

† 

y AB ≡ F JetA -F JetB - p
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After a great of algebra and calculus (here we spare the reader) the final
result for the dijet term in the correlation function is:
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Result for Angular Correlation Function
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Summing up all the terms for the different pair types we have

With  nA=nA
Flow+nA

Jet  by definition (and the same for B) this simplifies to
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where V2
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FlowA +

n Jet
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JetA   is the ellipticity of the A singles distribution (same for B)

Since the singles rates nA and nB are easily measured, a decomposition of the
angular correlation function can extract the rates of jet- and dijet-induced pairs
nAB

SameJet and nAB
Dijet directly, as well as the true singles ellipticities V2

A and V2
B.

(Caveat: The effects of residual multiplicity correlations, not taken into account here, will
raise the non-jet terms in the CF by a constant factor, which should be very close to 1 for
central event samples but could approach ~2 for wide peripheral or p/d+A samples.)



A Word About Conditional Yields
A related pair quantity of interest is the conditional yield of one type of particle,
say type B, conditioned on the presence of another type, say A.  This amounts to
counting the rate of (A,B) pairs compared to the rate of A singles:
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With this definition, it is clear that the azimuthal distribution of the conditional
yield is closely related to the correlation function:
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So the conditional yield of, say, all same-jet-induced B particles per A particle
can be calculated easily once the correlation function is decomposed:

† 

d(Df ) 1
N A

dN SameJet
AB

d(Df)Ú =
n B

2p
2p nSameJet

AB

n An B =
nSameJet

AB

n A



Conclusions

In the two-source model the angular correlation function has a
straightforward interpretation in terms of the rates of
different kinds of pairs, including jet- and dijet-induced
pairs.

The amplitude of the quadrupole term follows the product of the
quadrupole strengths of the two singles distributions, even
when jets show a dependence relative to the reaction plane.

Residual multiplicity correlations can increase the rate of non-
jet/non-dijet pairs, especially in peripheral event samples.

The relative-angle conditional yield distribution is related to the
angular correlation function by a simple constant scaling.


